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ULTRAPRODUCTS OF ATOMIC BOOLEAN ALGEBRAS

PETER JIPSEN AND HENRY ROSE(I}

O. Introduction

It follows from Tarski' 5 characterization of elementary equivalent
Boolean algebras (see [lJ Theorem 5. 5. 10 p. 300), that every two
infinite atomic Boolean algebras are elementary equivalent, and there­
fore the theory of infinite. atomic Boolean algebras is complete. .Thus
if there exists a saturated infinite atomic Boolean algebra of cardinality
a, then it is unique up to isomorphism.

In Section 3 we "identify" the saturated atomic Boolean algebra of
regular power a>cu (we denote it by Ba). If a is a successor cardinal
then Ba is shown to be isomorphic to an ultraproduct of finite Boolean
algebras. For a inaccessible Ba is the union of the elementary chain
{Br: r is a successor cardinal <a}. It is also shown that Ba is CUe

incomplete for any regular power a>cu.
In Section 4 it is shown that if B is any infinite atomic Boolean

algebra and a is a regular cardinal such that IB I<a (I B I~a if a is
successor) then B is elementary embeddable in Ba.

Finally, all the results are proven under the assumption of the
generalized. continuum hypothesis (CCH).

1. Preliminaries

1. 1. Notation and terminology
For a Boolean algebra B we denote by 0 and 1 the bottom and top

element of B respectively. If a, bEB then we let a+b and ab be the
join and meet of a and b.
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We refer the reader to [lJ and [5J for the following concepts
concerning Boolean algebras and Model Theory:

(i) Boolean algebras: atomic, a-complete (a-incomplete).
(ii) Model Theory: ultraproducts, good ultrafilters, elementary

chains, saturated and special models.

1. 2. Required results

In this paper we need the following wellknown results about the
structure of atomic Boolean algebras:

THEOREM 1. 2. 1. Let A be the set of atoms of an atomic Boolean
algebra B. Then

(i) B is complete if and only if B2E.gJ(A).
(ii) every element of B is the (Possibly infinite) join of all the atoms

less than it.

We also require the following results from model theory. For more
details the reader is referred to [IJ as well as the papers indicated.

THEOREM 1. 2. 2 (Morley and Vaught [4J). Two elementary equival­
ent saturated models of the same cardinality are isomorphic.

THEOREM 1.2.3 (Keisler [2J). Let III =fi and let E~q>(A) such
that IEI ~fi, every element of E has Power fi and E is closed under
finite intersections. Then E can be extended to a f3+-good ultrafilter.

THEOREM 1. 2.4 (Keisler [3J). Let a be an infinite cardinal and let
Q) be a countably incomplete a-good ultrafilter over a set 1. SUPPose the
Power of the language Jl is less than a. Then for any family Ai (iE
1) of models of Jl, the ultraProduet D'J)A; is a-saturated.

2. The ultraproduct

2. 1. The ultrafilter

Let B be an infinite atomic Boolean algebra, and consider the set
1= {iEB : i is the join of a finite set of atoms of B}.

Notice that Theorem 1. 2. 1 implies that 1 is a sublattice of B, in
fact I is the sublattice of compact elements of B. Also the structure
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of 1 depends only on the cardinality of the set of atoms of B. For
iEl consider the set

1;= {jEl: j~i}.

Then the collection

E= {It: iEI}

has the finite intersection property. In fact, for it, ..., i"El and x=i;
+...+i" we have .

nI;l = Ix·
i=l

We denote by Q) an ultrafilter over I with basis E. Since for any
iEIwe have IIt l=lll=IEI=,8 say, we may assume that Q) is a ,8+­
good ultrafilter (see Theorem 1. 2. 3) .

2. 2. The ultraproduct DQJ (i]

Let B and I be as in 2.1. For iEI consider the principal ideal
(i]= {jEB : j~i}.

Clearly (i] is isomorphic to a finite Boolean algebra, and (i] f;;1 for
all i El (see Theorem 1. 2. 1). Consider the product.

n(i].
iEJ

A function f: 1-.1 is a member of this product if and only if it
satisfies f(i) ~i for all iEI. We denote by

n(i]
Ql

an ultraproduct, where Q) is any ultrafilter from 2.1.

2. 3. The cardinality of the ultraproduct
Let B be any infinite atomic Boolean algebra with I, Q) and DQJ(i]

as in 2.2. For aEB we consider

falQ)E n(i]
Ql

where faE n(i] is given by fa (i) =ai for all iEI.
iEI

LEMMA 2.3.1. If a, bEB and ai=b then fair/) i=iblQ).

Proof. Suppose a::t b then for some i E I we have is;. a and i::t b.
Then for any jEl;, i~fa(j) and i::tfb(j).
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Hence {jEl: fa (j) =1=it,(j)} ~ I j E Q) so the result follows.

CoROllARY 2. 3. 2. Suppose that I has cardinality f3 and let C be any
infinite atomic Boolean algebra with IC\ s2tl• Then

IDQ)Ci] I= IDQ)C1 =2tl•

Proof. Here we assume that B is complete, with set of atoms A so
IAI = III =/3 and IBI = I9>(A) I=2tl (from Theorem 1.2.1). By the
preceeding lemma 2tl= IB Is IDQ) (i] I, but we also have

IDQ)(i] \ s IDQ)CI s ICll s (2tl)tl=2tl so the result follows..
3. Saturated atomic Boolean algebras of regular power

As in the introduction we denote the unique saturated atomic Boolean
algebra of power a2::w by Ba (if it exists). For a a successor cardinal,
a=f3+, denote by Q)a an a-good ultrafilter as defined in 2.1. (Q)a can
be constructed on the set I of compact elements of any infinite atomic
Boolean algebra for which III = (3). The next theorem identifies Ba
for regular a.

THEOREM 3. 1. Let a be an uncountable regular cardinal.
(i) If a is a successor cardinal then

for any infinite atomic Boolean algebra C with ICl Sa.
(ii) If a is a limit regular (inaccessible) cardinal then

Ba~U{Brlr is a successor cardinal<a}.

Proof. (i) Suppose a=f3+ then by Theorem 1.2.4 both n(i] and
Ql,

nCare f3+-saturated and by Corollary 2. 3. 2 they are both of cardinality
Ql,

2tl• Hence by GCH they are saturated. It now follows from Theorem
1. 2.2 and the completeness of the theory of infinite atomic Boolean
algebras that they are isomorphic.

(ii) Let r<o be two successor cardinals then by (i) above it follows
that Bo~ nBr so Br can be regarded as an elementary subalgebra

Ql.

of Bo• Thus the collection ({J= {Brlr is a successor cardinal <a} forms
a specializing chain for the special model U({J which is of cardinality
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a. But special models of regular limit power are saturated (see [lJ
p.217. Prop. 5. 16(iv» so USO~Ba'

In the remainder of this section we show that none of the Boolean
algebras in Theorem 3. 1 are complete. Let B, land E be as in 2. 1
and suppose Q) is any ultrafilter having base E. We construct acount­
able strictly increasing sequence of elements of DQ)(i] which has no
least upper bound. Let A be the set of all atoms of B and let A= {ar :
r<,B} be an enumeration A, IA I=/3. It follows from Theorem 1. 2.1
that each iEl is the join of a unique finite subset of A which we
will denote by l. Clearly i=~z,O=rjJand z={aEA: a~i}={arl,ar2'

.•. , arm} for some r1<r2< ...<rm</3, m= Ill, (i. e. we assume that the
elements of i are listed in strictly increasing order according to the
well-ordering of A). For n<w set io=O, in=a1+ .•. +an' We now
consider the sequence S= {Ji)Q) : n<m} ~DQ)(i] (for definition of fa/Q)
see 2. 3). S is a strictly increasing sequence since {iEl: fin (i) < fi ft +l
(i)} 21ift+! EQ) for each n<w. We now define a map p : D<))(i]-D(j)(i]
by p(g/Q» =g/Q) where

~(.)-{~{arl···,arm-l} if g(i)={ar,···,arm}, r1<r2 ···<rm
g t - 0 if g(i) =0. 1

(i. e. g(i) is the join of all but the last element of g(i).)

LEMMA 3.2.

( i) p is well defined and order preserving.
(ii) if g/Q)=I=O/Q) then p(g/Q»<g/Q) (fl. is strictly decreasing).
(iii) for fi)Q)ES defined above and n~l, PUift/Q» =fiH/Q).

Proof. (i) g/Q)=h/Q) implies g/Q)=h/Q) since {iEl: g(i) =h(i)}
c {iEl: g(i) =h(i)}. Hence p is well defined. Now let g/Q)~h/Q)
then {iEl: g(i) ~h(i)} EQ). If g(i) =0 then g(i) =O~h (i) so suppose
g(i)={ar1,· .. ,arm}, h(i)={a01 , ... ,aOft}' g(i)~h(i) implies g(i)r;;;.h(i)
so arm=aOi forsome k~n. We are assuming r1< ...<rm, 01< ...<0.
hence g(i) = {ar1, ... , arm-I} r;;;. {ao" ... , aOi _1 } r;;;. h (i) so g (i) ~ h (i). It
follows that {iEl: gU) ~h(i)} 2 {iEl: g(i) ~h(i)} EQ) so g/Q)~h/Q).

(ii) If g/Q)=I=O/Q) then {iEl: g(i)*O} EQ). But this is precisely
the set of i for which g(i)<g(i) so fl.(g/Q» =g/Q)<g/Q).

(iii) {iEl: fi ft (i) = fi ft -l (i) } 2 l in E Q) so the result follows.
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The next lemma is valid for join-semilattices but we need it only
for Boolean algebras.

LEMMA. 3.3. Let B be a Boolean algebra on which we can define an
order preserving function f.l : B-)oB such that f.l(b)<b for all b*O.
SUPPose also that we can find a sequence S=b,.: nEw} ~B with the
property f.l(b,.) =b,.-l for all n~l. Then

(i) S has no join in B.
(ii) the canonical image of S in any ultrapower of B has no join.

Proof. (i) Suppose c is a least upper hound for S. Then c~b,.

for all nEw and c*O. Since the function f.l is order preserving f.l(c)

~f.l(b,.) =b,.-l for all n21. Hence we have found a strictly smaller
upper bound for S.

(ii) Let d : B-)oDfj)B he the canonical embedding d(b) = <b : iEI)/eJ)
and define the map f.lg; on the ultrapower in the obvious way: for
h/eJ)EDg;B put f.lqy(h/Q) = (f.l (h (i» : iEI)/Q). This definition is well
defined and one easily checks that f.lg; has the same properties with
respect to UQ)B and d(S) = {d(b,.) : nEw} as' f.l has with respect to B
and S. If follows from part (i) that d(S) has no join in D~.

CoROLLARY 3.4. For each regular cardinal a>w Ba is wcincomplete.

Proof. If a is a successor cardinal this follows from Theorem 3. 1
(i), Lemma 3. 2 and 3. 3 (i). So let a he inaccessible and suppose Ba
is wccomplete. Let r be a successor cardinal <a then by Lemma 3.3
there exists a sequence {b,.: nEw} ~Br which has no least upporhound
in Br' But Br is embedded in Ba= U {Br: r is a successor cardinal <
a}. Let b be the join of {b,.: nEw} in Ba then {b} U {b,. : nEw} ~Bo
for some rs;,o<a, 0 successor and b is the join of {b,.} in BD. But by
Theorem 3. 1 (i) BD is isomorphic to an ultrapower of Br so by
Lemma 3.3 (ii) {b,.: nEW} has no join in BD.

(We identify Br with its isomorphic cannonical image in BD.)

4. The embedding theorem
In this section we reformulate our main result (Theorem 3. 1) in

the following way.

THEOREM 4. 1. Let C be an infinite atomic Boolean algebra of cardi­
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nality {3.

(i) For any suaessor cardinal a ~ {3, C is elementary embeddahle in
an ultraproduct of finite Boolean algebras and this ultraproduct has
cardinality a.

(ii) For any inaccessible cardinal a>{3, C is elementary embeddable
in Ba which is the union of an elementary chain of Boolean algebras
each isomorphic to an ultraproduct of finite Boolean algebras.

Proof. (i) Since a is a successor cardinal and ICl:::.:; a it follows
from Theorem 3. 1 (i) that Ba=n(i] =ne where Q)a is an a-good

Q)cr Q)cr

ultrafilter over I as in 2. 1. For each i E I (i] is a finite Boolean
algebra and C is elementary embeddable in any ultrapower of itself,
so the result follows.

(ii) Since IC I<a inaccessible, there exists successor cardinal r<a
such that ICl:::.:; r. By part (i) B' is elementary embeddable in Br
and from the construction of Ba (Theorem 3. 1 (ii)) it follows that
Br is an elementary subalgebra of Ba.

REMARK. Unlike the theory of atomless Boolean algebras, the theory
of infinite atomic Bloolean algebras is not model complete: In .I2(w)
consider the subalgebra R generated by the set

X={{2n, 2n+1} : nEw}.
Then aEX iff a is an a is an atom (element of height 1) in B but
a has height 2 in .12 (w). Since the height of an element is a first
order property we have that B is not an elementary subalgebra of
.I2(w).
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